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MODIFIED BOUNDARY CONDITIONS FORTWO-DIMENSIONAL GASDYNAMIC 

CALCULATIONS IN REGIONS OF ARBITRARY SHAPE WITH MOVING 

BOUNDARIES PRESENT 

G. S. Romanov and V. V. Urban UDC 533.6 

Boundary conditions enabling one to improve the accuracy, convergence, and economy 
on numerical calculations are discussed. 

Numerical calculations of gasdynamic flows in regions with arbitrary curved boundaries are 
greatly complicated by the difficulties of constructing the finite-difference grid (coordinate 
system) and approximating the boundary conditions. Because of this, much interest has recently 
been devoted to the investigation of ways of generating coordinate systems, accomplished, e.g., 
using conformal and quasiconformal transformations, elliptic equations, and algebraic trans- 
formations [i, 2]. Several ways of automating the distribution of the coordinate lines and 
monitoring them have been determined and a theoretical study of the errors introduced into the 
solution by arbitrary coordinate systems has begun. Nevertheless, the construction of a "good" 
coordinate system in regions of arbitrary shape where the boundary conditions are easily 
assigned is still a difficult problem of independent importance. Therefore, the search for 
ways of using simpler procedures to describe curved boundaries and assign boundary conditions 
is timely~ 

Below we consider a method of calculating boundary cells obtained by superposing an 
irregular orthogonal grid onto boundaries of arbitrary shape, already proposed in the period 
of the first computer calculations, according to [3]. Detailed information about this so- 
called method of fractional cells is contained in [4], where the necessary calculating 
equations are given. Work is known in which modified boundary conditions were introduced with- 
in the framework of the method of fractional cells. Thus, in [5] a moving undeformed 
boundary, a piston, is introduced along one of the coordinate axes, and the number of types 
of fractional cells is reduced to two using an irregular orthogonal grid. A more universal 
method of calculating curved boundaries moving arbitrarily over a grid was proposed in [6]. 
In this case conservative equations for boundary purposes and fractional cells are used in 
[5, 6]. In [5, 7] the condition of nonpenetration at the fixed curved boundaries is supple- 
mented by the condition of stream slippage, realized through reorganization of the velocity 
vector in the fractional cells. 

The aim of the present work is to clarify the role of the boundary conditions at curved 
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and moving boundaries, on the example of two-dimensional gasdynamic problems through test 
calculations made by the method of large particles [4], in the improvement of the accuracy, 
convergence, and economy of the computational process. Since the given conditions require a 
partial change in the finite-difference equations in the boundary cells, we first consider the 
statement of these conditions and then we write the entire system of equations. 

In a region D let there be a curved surface F approximated by segments of straight lines 
connecting the points of intersection of its contour with the lines of an irregular orthogonal 
grid. It is assumed that the sequence of points of intersection G(k), k = i, 2 ..... K, is 
numbered and that the circuit is made counterclockwise, i.e., so that the body lies to the 
left of the boundary. In the general case 12 types of fractional cells are possible (Fig. la). 
Let us consider the statement of the boundary conditions in the fractional cell shown in Fig. 
lb. The standard procedure for calculating such a cell [4] consists in assigning conditions 
of nonpenetration on the side Zk+l (the velocity is assumed to equal zero at it) and of 
partial penetration on the sides r k and rk§ The latter differs from the case on the size 
z k (free inflow-outflow) only by a decrease in the flows rk and rk+l in proportion to their 
sizes (e.g., the areas of the boundaries). Leaving the rules of calculation of fractional 
cells in force, we introduce the additional condition of stream slippage along the boundary 
FF by analogy with [5, 7]. Let the components of the velocity vector w be determined at the 
geometrical center; then, introducing the local Cartesian coordinate system 7, T at this 
point, we can exactly assign the condition of stream slippage, reconstructing the vector w-+ 
w' so that its component wl normal to the surface of the boundary FF is reduced to zero (Fig. 
Ib). The new values of the components of the velocity vector will be defined by the 
expressions 

( l )  

where A~j=:(zk+1--~)Azi/(r~+1--rk)Ar~, 0~z~l, 0~r~[, k = i, 2, 3 ..... K. Obviously, the 
condition (i) is not universal and is suitable for acceleration of the process of establishment 
in flow over stationary boundaries. For a moving boundary the velocity vector in an adjacent 
cell can have an arbitrary direction. In this case the velocities of the gas and the boundary 
are usually taken as equal, and the velocity of motion of the latter can be determined using 
additional equations. 

Let the velocity of the boundary be determined and equal to U. Then in a time At, in 
moving into the cell, an element of the boundary moves a mass A M = p S U A t  and increases the 
energy of the gas by an amount AE=pA~ It is proposed to modify the increment in energy by 
setting it equal to 

AE = 9UAt (E ~- E , )  S, (2) 

where E, = (U 2 -- u2)0.5 is the difference between the specific kinetic energies of the piston 
and of the gas displaced by it. Equation (2) contains the auxiliary term E,, which should 
help to equate the velocities of the boundary and of the contiguous gas through the input 
(during acceleration) or the output (during deceleration) of a certain amount of kinetic energy. 
Obviously, one must require that the energy unbalance be as minimal as possible and not make 
a decisive contribution to the energetics of the specific problem. With allowance for (i)- 
(2) we write the system of finite-difference equations of the method of large particles for 
irregular grid steps and arbitrary cells. 

First stage: 

u~j = ul)  - -  A [&+~/~ (p~+ , . j  - -  pTr + &-~/~_ (pTj-- p L . . i ) ] ,  

v~j - -  v ~  - -  A [ s t + , / ~  (p~',~+~ - -  p~ )  + s~_~/~ (p~5 - -  p~,~-~)] ,  ( 3 )  

~ n  n Ei i  E'~i " !24 2A [S~+I/2p~+~ ~ ~--- -- tti+t/2,l -- Si- I /2p~- l /2 , f  u~-i/2, i  @" 
n , on  o n n 

-~ S/+l/2pi ,1-1-1/2 i,f-}-l/2 - - ~  J/--I/2Pi,i--1/2 V~ ,/--i/2]. 
n n 

In the whole cells fiij = uij and v'~'xj = vi', while in the fractional cells ~n and vi j~n are de- 
termined through uij and vij from Eqs. (i~. zj 

Second stage: 
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Fig. i. Examples of the approximation of curved boundaries 
on regular (a) and irregular (c) grids using fractional 
cells, in each of which the velocity vector can be recon- 
structed (b) in accordance with Eq. (i). 

~i 2D 
IIIIIII r'~._ 

.... ' ' 

- -  2 M  

F i g .  2. Diagrams Of l o a d i n g  of  a t o n i -  
c a l  c a v i t y  by a p l a t e  (a) and of  t he  
v a r i a t i o n  o f t h e  c a l c u l a t i n g  g r i d  i n  
this cavity at different times (b). 
Regions of one-dimensional (ID) and 
two-dimensional (2D) flow are separ- 
ated by a dashed curve. 

I ~  t't ~ n  ~ rt 
~+~ ~,., Xi_i,sU~_i/~,S, u~_l/~, i ~ 0 n ~ n  ~ n  

--A~+sl21 uu~+ue'i '  u ~ + u ~ ' i ~ O  t- 

IXi,I--1U~,]--|/2, Vi,i__l/2 ~ 0 ~Aii~)i,i+~/2 , V~,i+l/2 ~j~. 0 + AI-~/: 
(Xifoi.]-l/2, Ui,]_l/2 ~ 0 --Ai+w2.7.n ~ n  ~n tAi,/+l' Vi,i+[/2, t,]_~.l'/2 ~ O; 

= o u ,  r>% ~, ~,"~"}, 

X n + t =  {9 n+~, 9"+1u, p'~+~v, p'~+SEn+i}, 

In the whole cells u~ i'-- us] and ~s = vii, while in the fractional cells u -n-+1 ~s and 
are determined through uij and vij from Eqs. (I). The condition (2) is used in Eq. 

E n+~ for cells adjacent to the moving boundary. calculate li 

In Eqs. (3) and (4) the following notation is adopted: 

A--- At A~+_-lt2 = S~I'I2At AI• = Ss• 
2V~so~. ' Vu ' V~j 

, ~ n P~4• IAr~ + p~Ars+_l 
P~• == ~Z i -~ Az~• t. Arj -~ Ari• 1. 

v~,i+_~Ars -[- v~iAr :+_ ~ etc.  
-v~,:~i/2 = Ar s + Ari• ~ 

(4) 

(4) to 
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By analogy with [4, 6], the system of equations (3)-(4) is homogeneous and conservative 

for cells of any type, the condition of nonpenetration is satisfied automatically when the 
area of the lateral surface (Si• or Sj~ir2) equal zero, coinciding as a whole with the 

surface of the body over which the flow occurs. In the case of a boundary with nonpene- 
tration, instead of the equality of the area to zero one can take the pressure inside it as 
equal to the pressure Pij in the cell being calculated. 

For many axisymmetric problems the number of types of fractional cells can be reduced 
considerably by breaking up the curved boundary with an irregular orthogonal grid in such a 
way that all the boundary cells are triangular (Fig. Ic). Then only four types of fractional 
cells, differing in the location of the region occupied by the gas, are possible near the 
surface of the boundary. In this case any fractional cell is bounded by two whole cells and 
the linear dimensions of their contiguous sides are the same. In this case the computation 
algorithm hardly differs in complexity from that for calculations of whole cells, since 
problems of combining small cells, stability, and approximation disappear. The success of 
such an approach is indicated by examples of calculations of gasdynamic flows in an explosive 
plasma generator [5, 8] and a magnetoplasma compressor [9]. 

Examples of Calculations. Let us consider the compression of gas inside a conical 
cavity by a thin plate thrown in the direction of the apex of the cone (Fig. 2a). Such a 
scheme is sometimes used in experiments on controlled thermonuclear fusion [i0, Ii], where 
instead of a flat plate or striker compressing the gas, a striker in the shape of a spherical 
segment with a radius equal to the length of the generatrix of the cone is used~ in our case 
the problem becomes two-dimensional, while the gasdynamic flow in the cavity has a more 
complicated structure than in the quasi-one-dimensional case [I0, ii]. Let us consider certain 
peculiarities of the construction of the numerical algorithm due to the presence of curved and 
moving boundaries. 

At t = 0 let the plate instantly acquire a velocity U n and move into the cone by uns 
In the process, the size of the first row of cells changes by uns and the mass and radius 
of the plate also decrease due to its cutting off against the wall of the cone. The gas- 
dynamic flows are calculated from Eqs. (1)-(4) with allowance for the new size of the 
cells, and in the second stage the movement of the gas due to its expulsion by the plate is 
taken into account. The pressure and temperature are found in accordance with the equation 
of state of the specific medium and the new velocity U n+1 of the plate is calculated from the 
law of its motion. With this the calculation of the time step is completed. 

As the plate approaches the boundary of a cell of the Eulerian grid &zl § O and hence, 
in accordance with the Courant condition, gt § 0. Therefore, when s = Zmin in the calcu- 
lations, the procedure of combining cells of the row Azl with those of the second row s is 
carried out so that the volume of the cells of the new row equals the sum of the volume of 
cells of the two former rows (we note that three cells are combined into one near the 
junction of the plate with the generatrix of the cone). The values of the gasdynamic quan- 
titites in each new combined cell are determined from the laws of conservation of mass, momen- 
tum, and total energy. 

We note a number of peculiarities of the flow under consideration, which can have practi- 
cal importance in the solution of other problems. If the plate moves at a supersonic velocity 
with respect to an initially stationary gas, then sections of one-dimensional and two-dimen- 
sional flows can be isolated in the calculation region (Fig. 2b). In the process of the calcu- 
lations one can trace the propagation of a shock wave from the corner of the junction of the 
plate and the generatrix of the cone (in the r direction) and the departure of the direct 
wave from the plate (in the z direction). The number of cells in the calculation must be 
increased in accordance with the motion of these waves. This procedure enables one to achieve 
considerable savings of computation time and computer memory. For example, having a grid that 
grows from 3 • 3 to 20 x 20 cells, one can, by renumbering the nodes, run through a space of 
i00 x i00 cells. In this case the calculation accuracy is increased in accordance with 
Richtmyer's analogy [3, 12], according to which in a calculation on a finite-difference grid 
one models a process analogous to the real one, with viscosity effects here being dependent 
either on artificial or schematic viscosity, while cells of the grid play the role of the 
colliding particles. In the above-indicated example there are an average of i0 cells along 
each coordinate in the calculation, enabling one to achieve ~I0 "collisions" and assure good 
resolution of the flow structure. 
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The convergence of the numerical solution to the exact one on different finite-differ- 
ence grids was studied in test calculations. In the case of the "standard" condition at the 
moving boundary (equality of the velocities of the gas and the plate) it was found that when 
the plate moves with a constant velocity, good agreement between the calculated and exact 
values of the gasdynamic variables behind the front of the developing plane shock wave is 
achieved only when the plate passes through 30-50 cells. In this case the separation of the 
front from the piston is 3-30 cells, depending on the intensity of the shock wave and the 
thermodynamic properties of the gas. From this it is seen that to achieve satisfactory accur- 
acy in the description of gas flow only in the initial stage of motion of the plate requires 
a grid having 40-80 cells along each axis, i.e., close to the practical limit usually used in 
two-dimensional calculations. 

The use of (2) in the energy equation in the second stage enables one to achieve consider- 
able improvement of the convergence. Satisfactory agreement between the mass velocity ull of 
the gas in the cell in front of the plate and the plate velocity U is observed when it has 
passed through only 5-10 cells (under the condition that the plate passes through each cell in 
no less than i00 time steps). The difference in the total amounts of energy E acquired by 
the gas at the end of the compression in cases a and b (Table i) is a maximum of several 
percent. 

The problem of the motion of a plate in a gas-filled cavity discussed here has a char- 
acteristic physical peculiarity: The main energy input into the gas and its acceleration are 
determined by the phase velocity of motion of the line of junction of the piston with the 
side wall. In this case the calculation accuracy is determined by how the finite-difference 
"flow" develops within the angle formed by the plate and the walls of the cavity. As is seen 
from Table i, the use of (2) enables one to obtain good agreement between the radial compon- 
ents of the mass velocity v and the phase velocity Vph (Wph = U/sin B) already in 5-10 cells. 
Satisfactory equality of these velocities in calculations on a grid twice as fine is also 
achieved in the case when the phase velocity is not constant but grows due to the decrease in 
the angle ~ (inside a hemispherical cavity), with the use of Eqs. (i) yielding somewhat more 
precise results, as is seen from Table 2. 

Thus, the data presented indicate that the boundary conditions under consideration enable 
one to improve the accuracy and convergence of calculations on a more economical grid. The 
effect of the use of (2) is such that only with its help did it become possible in practice 
to obtain a satisfactory result on grids of 2000-3000 cells. The condition (i) is realized 
not at the boundary but inside a fractional cell. This seems problematical at first glance, 
especially for the first corner cell (see 1 in Fig. ic), in which one side moves while the 
other deflects the stream. Here it should be noted that the slippage condition does not 
alter but only supplements the usual conditions of nonpenetration (or partial penetration) 
in a fractional cell, determined at its sides, as usual. Inside a corner (two of them in a 
cone: at the plate and at the apex), orientation of the vector along the lateral surface 
means the simultaneous orientation of the velocity components (v and u) along the other 
direction (the r and z axes, respectively). As the calculations show, this improves the 
accuracy. A similar effect is achieved not only for triangular cells but also for the 
arbitrary fractional cells considered in [7]. 

A qualitative picture of the development with time of the shock-wave flow inside coni- 
cal and hemispherical cavities is shown in Fig. 3. Two shock waves are formed at the start of 
the motion of the plate in the cone (Fig. 3a): a direct one (I) and a refraction wave (2). 
Their mutual intersection can lead to the formation of a triple configuration (of the Mach 
type) and the appearance of wave 3 (Fig. 3b). These shock waves undergo a number of re- 
flections, as a result of which wave i disappears (Fig. 3c, d). Inside a spherical segment 
the shock-wave pattern, initially also consisting of waves 1 and 2 (Fig. 3e), evolves somewhat 
differently. Here the appearance of wave 3 (Fig. 3f) is due to the reflection of wave 1 on 
the wall of the segment, since the line of junction of the front of wave 1 with the wall sur- 
face moves with a higher phase velocity than the line of junction of this surface with the 
front of wave 2. As the plate approaches the apex of the segment, the phase velocity grows 
rapidly and the gasdynamic flow takes on a cumulative character, manifested in the develop- 
ment of high-energy radial jets. Then after the collapse of these jets, moving behind the 
front of wave 2, a dense compact cluster is formed at the axis of symmetry (Fig. 3g, h), 
where the parameters of the gas reach the maximum values. We note that at the intersections 
of the fronts of waves 2 and 3 (Fig. 3c, d, f, g) the formation of triple configurations is 
possible, but special conditions are probably required for this (e.g., a large radius of 
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c d 

Fig. 3. Qualitative picture of the evolution of shock 
waves inside a cone and a hemisphere. The plate is 
hatched, 

Fig. 4. S~atial distribution of 
isobars (Mbar) in conical (a) 
and hemispherical (b) compression 
chambers; r, z, cm. 

curvature of the spherical segment, the conditions determining the aperture half-angle of the 
cone andthe plate velocity, etc.). In the variants of the calculations discussed, the same 
shock-wave pattern as in Fig. 3 was obtained. 

For a quantitative comparison of the parameters of the maximum compression inside conical 
and hemispherical targets of aluminum filled withdeuterium initially at i atm, we made calcu- 
lations of variants of loading of the cavity by a plate with a thickness of 0.01 mm, a density 
of 1.3 g/cm~; and a diameter of 2 mm. Initially having a velocity of 60 km/sec, the plate 
moved into a cone with an angle of 60 ~ at the apex or a hemisphere with a diameter of 2 mm and 
was decelerated, losing its kinetic energy through the decrease in area and the work performed 
on the gas. Radiative transfer and vaporization of the walls were taken into account in the 
problem by analogy with [8]; the processes of acceleration of the plate and the deformation of 
it and the walls were not considered. The thermodynamic properties of the deuterium plasma 
were assigned from a table constructed on the basis of the data of [13] and calculations from 
the Saha model. 

In the conical target the maximum parameters p = i.i Mbar, p = 0.ii g/cm ~, and T = 22 eV 
are reached behind the reflected shock wave 3 (Fig. 4a) when the flow structure corresponds to 
the pattern shown in Fig. 3d. The velocity of the plate at this instant is 6.1 km/sec. In- 
side the spherical segment the maximum of the gasdynamic quantities (p = 3.1 Mbar, p = 0.12 
g/cm ~, T = 28 eV) lies in a narrow layer at the axis of symmetry at the instant the plate 
fully stops (Fig. 4b). As we see, the extremal parameters are comparatively close in the 
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cases of the two targets. The calculations of these problems were made on a grid of 50 x 50 
cells and the calculation time was about 1 h on a BESM-6 computer. 

In conclusion, we note that the quantitative values of the gasdynamic quantities in the 
problems under consideration depend strongly on the precise description of the sections of 
flow near the junction of the plate and the walls of the compression chamber, as well as at 
the apex of the cone or the spherical segment. The most careful possible observance of the 
conditions of stream slippage along the curved surface at each point of it is required here. 

NOTATION 

T, temperature; p, pressure; E, total specific energy; p, density; w, vector of mass 
velocity of the gas; u, v, axial and radial velocity components; z, r, axial and radial coor- 
dinates; t, time; U, velocity of the plate; AT, BZ, ~R, steps in time and space; S, V, area 
of the lateral surface and volume of a cell; Zmi n, minimum size of a cell of the grid along 
the z axis; B, angle of junction of the plate and the compression chamber. Indices: i, j, 
centers of cells of the grid along z and r; k, fractional cell; ph, phase velocity, n, 
number of the time step; (~), intermediate values of gasdynamic quantities. 

LITERATURE CITED 

,T~ U i. J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, ~o ndary-fitted coordinate systems 
for numerical solution of partial differential equations (review)," J. Comput. Phys., 
47, 1-108 (1982). 

2. Numerical Grid Generation, J. F. Thompson (ed.), Proceedings of Symposium on Curvilinear 
Coordinate Systems and their Use in the Numerical Solution of Partial Differential 
Equations, Nashville, Tenn. (1982), Appl. Math. Comput., i0-ii, 1-863 (1982). 

3. P. J. Roache, Computational Hydrodynamics, Hermosa (1976). 
4. O. M. Belotserkovskii and Yu. M. Davydov, The Method of Large Particles in Gas Dynamics 

[in Russian], Nauka, Moscow (1982). 
5. G. S. Romanov and V. V. Urban, "Numerical modeling of an explosive plasma generator in a 

gas-dynamic approximation," Inzh.-Fiz. Zh., 37, No. 5, 859-867 (1979). 
6. B. P. Gerasimov and S. A. Semushin, "Calculation of flow over bodies of changing shape 

on a moving Eulerian grid," Differents. Uravn., 17, No. 7, 1214-1221 (1981). 
7. Yu. M. Davydov, V. D. Kulikov, and E. V. Maiorskii, "Investigation of flow over working 

blade rows of the profiles of steam turbines by the method of large particles," Zh. Prikl, 
Mekh. Tekh. Fiz., No. 3, 47-50 (1984). 

8. G. S. Romanov and V. V. Urban, "Numerical modeling of an explosive plasma generator with 
allowance for radiative energy transfer and wall vaporization," Inzh.-Fiz. Zh., 43, No. 
6, 1012-1020 (1982). 

9. S. I. Ananin and T. A. Lepshei, "Numerical modeling of the dynamics of plasma compression 
streams by the method of large particles," Dokl. Akad. Nauk, SSR, 27, No. 8, 710-713 
(1983). 

I0. S. L. Bogolyubskii, B. P. Gerasimov, V. I. Liksonov, et al., "Yield of thermonuclear 
neutrons from a plasma compressed by an envelope," Pis'ma Zh. Eksp. Teor. Fiz., 24, No. 
4, 206-209 (1976). 

Ii. S. I. Anisimov, V. I. Vovchenko, A. S. Goncharov, et al., "Processes of generation of 
thermonuclear neutrons during laser action on a conical target," Pis'ma Zh. Tekh. Fiz., 
4, No. 7, 388-392 (1978). 

12. R. D. Richtmyer and K. W. Morton, Difference Methods of Initial-Value Problems, 2nd ed., 
Interscience, New York (1967). 

13. V. P. Kopyshev and V. V. Khrustalev, "Equation of state of hydrogen up to i0 Mbar," Zh. 
Prikl. Mekh. Tekh. Fiz., No. i, 122-127 (1980). 

37 


